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From the philosophical viewpoint, two interpretations of the quantum 
measurement process are possible: According to the first interpretation, when we 
measure an observable, the measured system moves into one of the eigenstates 
of this observable ("the wave function collapses"); in other words, the universe 
"branches" by itself, due to the very measurement procedure, even if we do not 
use the result of the measurement. According to the second interpretation, the 
system simply moves into a mixture of eigenstates, and the actual "branching" 
occurs only when an observer reads the measurement results. According to the 
first interpretation, a mixture is a purely mathematical construction, and in the 
real physical world, a mixture actually means that the system is in one of the 
"component" states. In this paper, we analyze this difference from the viewpoint 
of algorithmic information theory; as a result of this analysis, we argue that 
only pure quantum states are fundamental, while mixtures are simply useful 
mathematical constructions. 

1. ARE MIXTURES REAL? FORMULATION OF THE PROBLEM 

1.1. For Whom Is This Paper Written? 

This paper contains an application of algorithmic information theory to 
the foundations of quantum mechanics. In view of its interdisciplinary charac- 
ter, we wrote this paper with two audiences in mind: 

�9 To make the paper understandable for specialists in algorithmic infor- 
mation theory, we included brief descriptions of the corresponding 
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physical processes and problems; physicists can safely skip these 
parts of the text. 
To make the paper understandable for physicists, we included a brief 
description of the main notions of algorithmic information theory; 
those who already know these notions can safely skip the correspond- 
ing parts of the text. 

1.2. Measurement Process in Quantum Mechanics: A Brief 
Mathematical Description 

In quantum mechanics (QM), states are described by unit vectors in 
Hilbert space H. A Hilbert space is, crudely speaking, an infinite-dimensional 
complex-valued generalization of a Euclidean space. In more mathematical 
terms, a Hilbert space is a linear space over complex numbers with a scalar 
product that satisfies several reasonable properties (similar to scalar product 
of vectors in Euclidean space). 

The fact that H is a linear space means that the notion of linear combina- 
tion is defined. The linear combination of two states is called their superposi- 
tion. Superposition is a purely quantum notion that has no classical analogue 
and that is largely responsible for the "paradoxical" (from the viewpoint of 
macrophysical intuition) behavior of quantum objects. 

As we have mentioned, for every two vectors q0 and ~ from H, a scalar 
(dot) product (q~, ~) is defined. A typical example of a Hilbert space (that 
corresponds to the simplest nonrelativistic quantum systems) is the set of all 
square-integrable complex-valued functions ~(xl, x2, x3) defined on a 3D 
space. For this space, the scalar product is defined as 

(q~, ~) = f q~(xl, x2, x3)~*(xl, x2, Xa) dxl dx2 dx3 

where t~* means complex conjugation. 
The physical meaning of a scalar product is related to measuring measur- 

able (observable) quantities (observables, for short). In this description, 
observables are linear operators from H to H. For example, a coordinate Xl 
is a linear operator that transforms a function d:(Xl, x2, x3) into a function 
xl'~(xt, x2, x3). 

If we are in a state ~ and we measure an observable A with eigenvectors 
qoi and corresponding eigenvalues ki, then, with probability Pi = I(q~, t~)l 2, 
the result of this measurement is k~ and the measured object "jumps" into 
the state q0~. 

In particular, if a system was in the eigenstate IIJ i a l ready,  then with 
probability 100%, the result of measuring the observable A is k~. If a system 
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was in a more general state, then measuring A can lead to different possible 
results, with different probabilities. 

We start with a state that is, in general, a superposition of different 
eigenstates q0i and we end up in one these eigenstates. For example, if  we 
measure coordinates x and we start in a state ~(x) for which ~(x) :# 0 for 
all x, i.e., in which the particle is not located in any of  the spatial points x, 
then we end up in a state in which the particle is with 100% probability 
located in one of the spatial points (actually, we can only measure coordinates 
with a certain accuracy ~, and therefore, rather than getting a state of  a delta- 
function type, in which a particle is located in exactly one point, we get a 
state in which coordinates are located in a box of  linear size ~). 

I f  an observable has degenerate eigenvalues, i.e., if for some eigenvalues, 
we have an eigenspace Li that may be more than one-dimensional, then the 
state ~ "jumps" into an (orthogonal) projection Pi(O) onto one of eigenspaces 
Li, and the probability of  jumping into Pi(d~) is equal to I Pi(~)I 2. 

1.3. Two Possible Philosophical  Interpretation of  Quantum 
Measurement  Process: Which Is Correct? 

From the philosophical viewpoint, two interpretations of  the quantum 
measurement process are possible: 

1. According to the first interpretation, when we measure an observable 
A in a state 0, the measured system moves into one of the eigenstates ~ = 
PI(~) . . . . .  ~Ji = Pi(O) . . . .  of  this observable ("the wave function collapses"); 
in other words, the universe "branches" by itself, due to the very measurement 
procedure, even if we do not use the result of  the measurement. 

2. According to the second interpretation, after the measurement, the 
system moves into a special new state m called a mixture. From the mathemati- 
cal viewpoint, a mixture is a probability measure on the set of  pure states. 
In the case of  measurement, we move into a mixture of  eigenstates t~, = 
Pi(d/) in which each state ~i occurs with the probability Pi = I ~Ji 12. We can 
denote this mixture m by Pl" ~l * " '"  * Pi" ~bi * "'" (we use a special symbol 
�9 to emphasize that this state m is not a linear combination of  the states t~3. 
In this interpretation, there is no "branching" related to the measurement 
process itself; the actual "branching" occurs only when an observer reads 
the measurement results. 

Which o f  the two interpretations is correct? 

The difference between these two interpretations can be reformulated 
in terms of mixtures: 

1. According to the first interpretation, the mixture is apurely mathemati- 
cal construction. This means that in reality, if a system is in a mixture of  
states dd~ . . . . .  Oi . . . . .  then actually the system is in one of  these states ,~. 



170  K r e i n o v i c h  and Longpr~ 

2. According to the second interpretation, the mixture is a new physical  
state, and it is possible that a system is in this mixture state without actually 
being in one of the component states. 

1.4. It Is Difficult to Distinguish These Two Interpretations Based 
on Measurement Results Because They Lead to the Same 
Probabilities of Different Measurement Results 

The only meaningful way to distinguish between two physical situations 
is to propose a measurement that leads to different results in these situations. 
We already know what happens if we measure an observable A in a "normal" 
(pure) quantum state: as a result, we get some real numbers with different 
probabilities, i.e., we get a probability measure on the set of all real numbers. 
One measure (we will denote it by IL~) corresponds to the state Ol, another 
probability measure (we will denote it by IL2) corresponds to the state 02, 
etc. So, if r is the result of measuring the observable A in the state t~/, then 
for every set S, the probability P(r  ~ S) that this result r belongs to the state 
S is equal to IL;(S). 

Let us now consider the situation in which we do not know what state 
we are in; we only know that with probability Pi, we are in the state ~i- These 
state ~ are incompatible in the sense that a system cannot be simultaneously 
in two different states ~b i and Oj, i ~ j. Therefore, applying standard formulas 
of probability theory, we can conclude that in this situation, the probability 
IL(S) of the measurement result r to be in the set S is equal to 

[ s  : p l  ~ I L l ( S )  "{- " ' "  + p l  ~ IL l (S )  + ~ 1 7 6  

The probability of getting a result in a mixed state Pl " 01 * "'" * Pi" d~i 
�9 . - .  is defined as the probability combination of probabilities corresponding 
to the component states. To be more precise, the probability IL(S) that the 
result of  this measurement belongs to the set S is defined as the sum 

Pt" ILl(S) + " "  + pi" p,i(S) + " "  

This is exactly the same expression as for the first interpretation. 
Hence, these two interpretations lead to the same probabilities of  different 

measurement results. Therefore, based on these probabilities, we cannot dis- 
tinguish between these interpretations. 

Can we distinguish them in any other way? 

1.5. Plan of the Paper 

In this paper, we will show, using a recent mathematical formalization 
of randomness called algorithmic information theory, that the original philo- 
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sophical question can be reformulated in precise mathematical terms and that 
the resulting mathematical question can be solved. 

The resulting answer to the original philosophical question is as follows: 

�9 From the observational viewpoint, we cannot distinguish these two 
cases. 

�9 Therefore, using Ockham's razor (entities should not be multiplied 
unnecessarily), we can conclude that the special notion of a mixed 
state is not necessary. 

In other words, if we use Ockham's  razor, then only pure quantum states are 
fundamental while mixtures are simply useful mathematical constructions. 

The notions and result from algorithmic information theory that are 
necessary for this conclusion will be described in the next section. 

Our philosophical conclusion is based on a new mathematical result that 
is, we believe, of  separate mathematical interest. 

Comment. The main result of  this paper was first announced in Kreinov- 
ich and Longpr6 (1995). 

2. OUR APPROACH TO THE PROBLEM 

2.1. Preliminary Comment: A Realistic Observable Can Have Only 
Finitely Many Eigenspaces 

Before we describe our idea, let us make the following comment: From 
the purely mathematical viewpoint, an observable may have infinitely many 
eigenvalues. However, for real-life measuring devices, there usually is a 
bound A on possible values of measured quantities, and there usually is a 
certain accuracy e > 0 with which we can measure. Therefore, as a result 
of  this measurement, we can have only finitely many different values of  the 
measured quantity (crudely speaking, - A ,  - A  + e . . . . .  0, e, 2e . . . . .  A). 
Hence, we can assume that the observable A has only finitely many eigenvalues 
and eigenspaces. 

Let us denote the total number of  these eigenspaces by n. 

2.2. Main Idea 

The only way to say something about a state of  a system is to undertake 
some measurement (or measurements) and to analyze the results of  these 
measurements. Therefore, to tell whether mixtures are real or not, we will 
pick some sequence of measurements ~ = B 1 . . . . .  B,n . . . .  and compare 
the predictions in two different situations: 

�9 When we have one of the states ~Ji = Pi(O), 1 <-- i <-- n. 
�9 When we actually have a mixture. 
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The only thing that quantum mechanics actually predicts is probabilities, 
i.e., in mathematical terms, a probability measure on the set of possible 
measurement results (sequence of real numbers). Let us denote by ix~ the 
probability measure on the set of all possible measurement results that corre- 
sponds to the sequence of measurements ~ and to the state ~i. 

In these terms, our two interpretations lead to the following two probabil 
istic conclusions: 

1. According to the first interpretation, with probability p,., the system 
is in a state ~i, and therefore, for some i = 1 . . . . .  n, the result of the 
measurement will be random with respect to (w.r.t.) a probability measure 
p~i = p~. In other words, according to the first interpretations, one of the 
following statements is true: 

�9 The result o f  the measurement  is random w.r.t, the probability mea- 

sure P.t. 
. . .  

�9 The result o f  the measurement  is random w.r.t, the probability mea- 
sure Ix~. 
. . ,  

�9 The result o f  the measurement  is random w.r.t, the probability mea- 
sure ~n. 

2. According to the second interpretation, the system is in the mixture 
(composite) state, and therefore the following statement is true: 

�9 The result o f  measuring ~ is random w.r.t, the composite measure 

P.~ = Pl" I~l + "'" + Pn" b~, 

In order to compare the predictions of these two interpretations, we must 
specify what exactly is predicted by saying that "the result of measurements is 
random w.r.t, some measure ~." This specification is provided by algorithmic 
information theory. 

2.3. Algorithmic Information Theory: A Brief Introduction 

The formal definition of "random" was proposed by Kolmogorov's 
student Martin-LOf (1966), for the current state of the art, see, e.g., Li and 
Vit~inyi (1993). [We will be using a version of  this definition proposed by 
Benioff (1976); see also Kreinovich and Longpr6 (1996).] 

To describe this definition, let us recall how physicists use the assumption 
that something is random. For example, what can we conclude if we know 
that the sequence of heads and tails obtained by tossing a coin is random? 
One thing we can conclude is that the fraction of heads in this sequence tends 
to II2 as the number of tosses tends to infinity. What is the traditional argument 
behind this conclusion? In mathematical statistics, there is a mathematical theo- 
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rem saying that w.r.t, the natural probability measure on the set of all infinite 
sequences, for almost all sequences, the frequency of heads tends to 1/2. In 
more mathematical terms, this means that the probability measure ~(S) of  the 
set S of all sequences for which the frequency does not tend to 1/2 is 0. 

Because the property P holds for almost all sequences to, sequences that 
do not satisfy this property are (in some sense) exceptional. Because we have 
assumed that a given sequence to is random, it is therefore not exceptional, 
and hence this sequence to must satisfy the property P. 

The informal argument that justifies this conclusion goes something like 
this: if to does not satisfy the property P, this means that to possesses some 
property (not P) that is very rare (is almost never true), and therefore to is 
not truly random. 

All other existing applications of statistics to physics follow the same 
pattern: we know that something is true for almost all elements, and we 
conclude that it is true for an element that is assumed to be random; in this 
manner, we estimate the fluctuations, apply random processes, etc. So, a 
random object is an object that satisfies all the properties that are true for 
almost all objects (almost all with respect to some reasonable probability 
measure). To give a definition of  randomness, we must somewhat reformulate 
this statement. 

To every property P that is true almost always, we can put into correspon- 
dence a set Sp of all objects that do not satisfy P; this set therefore has 
measure 0. An object satisfies the property P if and only if it does not belong 
to the set St,. Vice versa, if we have a definable set S of measure 0, then the 
property "not belong to S" is almost always true. 

In terms of such sets, we can reformulate the above statement as follows: 
if an object is random, then it does not belong to any definable set of measure 
0. So, if an object does not belong to any definable set of  measure 0, we 
can thus conclude that it has all the properties that are normally deduced for 
random objects, and therefore it can reasonably be called random. 

Thus, we arrive at the following definition: an object is random with 
respect to a probability measure ix if and only if it does not belong to any 
definable set E of  ix-measure 0 [Ix(S) = 0]. This, in effect, is the definition 
proposed by Martin-LOf. 

Now, we have an idea, and a means to formalize it. We are thus ready 
to formulate our result. 

3. MAIN RESULT 

3.1.  M a t h e m a t i c a l  Resu l t  

Definition. Let a mathematical language L be fixed (e.g., language of  
set theory, or language of recursive objects). 
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�9 Sets defined by formulas f rom L will be called (L-) definable. 
�9 Let IX be a probability measure on a set X. An  element x ~ X is 

called random w.r.t. IX if  x does not belong to any L-definable set o f  
p~-measure 0. 

Comment.  For recursive L, we get the Kolmorogov-Mar t in -LOf  defini- 
tion o f  randomness.  

Theorem. Let Ixt . . . . .  ixn be measures on X, and let tx~ > 0, 
eq + . - -  + an = 1. Then an element x ~ X is random w.r.t, a composi te  
measure ix = eq.  ixl + " '"  + an" ixn iff x is random w.r.t, one o f  the mea-  
sures ixi- 

Comments.  1. This property was postulated when Levin (1976) defined 
tests o f  randomness for arbitrary measures [see also the last section of  Gfics 
(1980)]. In our definition, this property becomes  a theorem. 

2. For reader 's  convenience, the proof  o f  this theorem is placed in the 
last section. 

3.2. Physical Consequence of Our Result 

By applying the theorem to cx i = Pi and ixi = P~,  we can conclude that 
every sequence random w.r.t, ix~ is random w.r.t, one o f  the measures IX~. 
We can reformulate this by saying that i f  a part icle  is in a composi te  state, 
it actually is in one o f  the pure states. 

This conclusion is in accordance with the opinion of  many physicists 
who view pure states as real, and composi te  states as a useful mathemati-  
cal construction. 

4. P R O O F  O F  T H E  T H E O R E M  

We must  prove that an element x ~ X is random w.r.t, a composi te  
measure Ix =Otl" Ixl + " '"  + an" ixn"-'x is random w.r.t, one o f  the measures ix~. 

4.1. --> 

Let us first prove that if an element x is random w.r.t, a composi te  
measure IX = oq ' ix t  + "-" + Otn'ixn, then x is random w.r.t, one o f  the 
measures ix/. 

We will prove this statement by reduction to a contradiction. Indeed, 
let us assume that x is random w.r.t, ix and not random w.r.t, any of  the 
measures IX1 . . . . .  ixn. By definition o f  a random element, the fact that x is 
not random w.r.t, ixi means that x is contained in some definable set Ei o f  
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Ix/-measure 0. So, for every i f rom 1 to n, there exists  a def inable  set E; for  

which Ixi(Ei) = O. 
Since the sets E1 . . . . .  E~ are definable,  their  in tersect ion 

E = El tq . . .  f'l En 

is also definable.  F rom x e E; for  all i, we conc lude  that x ~ E. 
Fo r  every  i, the set E is a subset  o f  the set Ei which  has ixi-measure 0. 

Therefore,  this subset E also has Ixrmeasure  0: lxi(E) = 0. F r o m  ixi(E) = 0 
for all  i, we  can conclude that Ix(E) = oq.  Ixl(E) + " '"  + or,- lx~(E) = 0. So 
an e lement  x belongs to a def inable  set E o f  Ix-measure 0. This  conc lus ion  
contradic ts  our  assumpt ion that x is random w.r.t. Ix. 

The  result ing contradic t ion  shows that it is imposs ib le  that x is not  
r andom w.r.t, al l  ixi. Hence,  x is r andom w.r.t, at least  one o f  n measures  ~;. 
The  ---> part  is proven. 

4.2.  e-- 

Let us now prove that i f  x is random w.r.t, one o f  the measures  Ixi, then 

x is r andom w.r.t, a compos i te  measure  IX = cq-  IX~ + . - .  + otn" Ixn. 
We wil l  also prove this part  by  reduct ion to a contradict ion.  Let  us 

assume that x is r andom w.r.t, ixz and x is not  r andom w.r.t. IX. The fact  that 
x is not  r andom w.r.t, ~L means  that  there exists  a def inable  set E o f  Ix-measure 
0 that contains  x. For  this set E, we  have  IX(E) = oq .  IXI(E) + " '"  + otn" IXn(E) 
= 0. Al l  the terms in this sum are nonnegat ive;  therefore  the only  way  for  
this sum to be equal to 0 is for  al l  the terms to be 0; in part icular,  cti" IXi(E) 
= 0. F r o m  c~ i > 0, we can now conc lude  that IX,(E) = 0. Since  x E E and 
E is a def inable  set, this conclus ion  contradicts  our  assumpt ion  that x is 
r andom w.r.t. Ixi. This cont radic t ion  concludes  the p roo f  o f  the e-- part  o f  
the theorem.  

The  theorem is proven.  
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